Until few
years ago, 3D printing was a niche technology used mostly for prototyping and
creating models of small-size structures for some selected applications. For
example, it was used, albeit not extensively, in producing small-scale models
of buildings, mechanical parts, tools and other objects.
However,
since the technology has been adapted to fit other applications as well, it has
been possible to use 3D printing to actually create or even mass produce
various components for the aerospace, consumer, healthcare, automotive and
other industries.
In other
words, 3D printing has moved from the stage of technology for model prototyping
to the stage of real-world manufacturing along with other classical
technologies for mass production of components such as vacuum casting,
injection and plastic molding and CNC-controlled lathing and machining.
While it
is unlikely that 3D printing may supplant any of the above technologies anytime
soon, many analysts agree that 3D printing has many advantages if compared to
other classical methods of mass production such as a very high flexibility in
the production mix and no or very few re-tooling requirements.
Flexibility
in the production mix means that it is possible to 3D print many different
shapes and forms using a variety of materials without any strong requirement of
customization of the printing machine.
This
allows the 3D printer to be able to produce everything from the single
component to the small-lot production pre-series up to high-volume production
Flexibility
in the production scale also means adaptability to be used in several different
markets: in the aerospace and healthcare markets were low-volumes and
customization of the product are in most cases a must.
Several
players are active in the 3D printing arena: some of them are from Europe, such
as EnvisionTec from Germany or LayerWise from Belgium, other are from the US,
such as Organovo and ExOne.
Arcam of
Sweden and Renishaw of the United Kingdom are also smaller players which are
growing up fast to join the ranks of the big guys.
While 3D
printing may seem a unique and well defined technology to many, it comprises a
number of different methods of printing the final product: laser sintering and laminated
object manufacturing being some of them, along with stereo-lithography and
electron-beam melting
Desktop
inkjet printing is also needful for very small-scale, lab sized applications,
where very few pieces need to be manufactured at low cost for research or
product development applications.
Other
market segments where 3D printing is expected to become widely adopted are
small-variety large-lot production markets such as the automotive and
architecture markets. While there is still a huge gap in what dimensionally can
be printed today and the size of what would be needed to print in the
architecture market, that is, a portion of building or an entire chassis of a
car, there are no inherent limitations in the technology that would prevent the
creation of very large 3D printing machines capable of 3D printing virtually
any other object which is mass produced today by other means.
About the Author-
This
article was written by Matteo Martini,
author and CEO of Martini Tech, a company that provides nanoimprint, PSS
patterning, MOCVD deposition, sputtering,
MEMS foundry, GaN wafer, GaN LED Technology and
other microfabrication-related services. Please have a look at our blog.
No comments:
Post a Comment